How to use filter, map, and reduce in Python 3

How to use filter, map, and reduce in Python 3

You can read about the changes in Whats New In Python 3.0. You should read it thoroughly when you move from 2.x to 3.x since a lot has been changed.

The whole answer here are quotes from the documentation.

Views And Iterators Instead Of Lists

Some well-known APIs no longer return lists:

  • […]
  • map() and filter() return iterators. If you really need a list, a quick fix is e.g. list(map(...)), but a better fix is often to use a list comprehension (especially when the original code uses lambda), or rewriting the code so it doesn’t need a list at all. Particularly tricky is map() invoked for the side effects of the function; the correct transformation is to use a regular for loop (since creating a list would just be wasteful).
  • […]

Builtins

  • […]
  • Removed reduce(). Use functools.reduce() if you really need it; however, 99 percent of the time an explicit for loop is more readable.
  • […]

The functionality of map and filter was intentionally changed to return iterators, and reduce was removed from being a built-in and placed in functools.reduce.

So, for filter and map, you can wrap them with list() to see the results like you did before.

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> list(filter(f, range(2, 25)))
[5, 7, 11, 13, 17, 19, 23]
>>> def cube(x): return x*x*x
...
>>> list(map(cube, range(1, 11)))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> import functools
>>> def add(x,y): return x+y
...
>>> functools.reduce(add, range(1, 11))
55
>>>

The recommendation now is that you replace your usage of map and filter with generators expressions or list comprehensions. Example:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> [i for i in range(2, 25) if f(i)]
[5, 7, 11, 13, 17, 19, 23]
>>> def cube(x): return x*x*x
...
>>> [cube(i) for i in range(1, 11)]
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>>

They say that for loops are 99 percent of the time easier to read than reduce, but Id just stick with functools.reduce.

Edit: The 99 percent figure is pulled directly from the What’s New In Python 3.0 page authored by Guido van Rossum.

How to use filter, map, and reduce in Python 3

As an addendum to the other answers, this sounds like a fine use-case for a context manager that will re-map the names of these functions to ones which return a list and introduce reduce in the global namespace.

A quick implementation might look like this:

from contextlib import contextmanager    

@contextmanager
def noiters(*funcs):
    if not funcs: 
        funcs = [map, filter, zip] # etc
    from functools import reduce
    globals()[reduce.__name__] = reduce
    for func in funcs:
        globals()[func.__name__] = lambda *ar, func = func, **kwar: list(func(*ar, **kwar))
    try:
        yield
    finally:
        del globals()[reduce.__name__]
        for func in funcs: globals()[func.__name__] = func

With a usage that looks like this:

with noiters(map):
    from operator import add
    print(reduce(add, range(1, 20)))
    print(map(int, [1, 2]))

Which prints:

190
[1, 2]

Just my 2 cents 🙂

Leave a Reply

Your email address will not be published. Required fields are marked *